
1

Collective Awareness Platform for

Tropospheric Ozone Pollution

Work package WP2
Deliverable number D2.4
Deliverable title Open Link Data Repository Development
Deliverable type R
Dissemination level PU (Public)
Estimated delivery date M9
Actual delivery date 10/10/2016
Actual delivery date after EC
review

15/09/2017

Version 2.0
Comments

Authors
Jose M. Barcelo-Ordinas, Albert Cerezo Llavero, Biel Pieras Morell,

Jorge Garcia-Vidal, Manel Guerrero-Zapata (UPC)

2

Document History
Version Date Contributor Comments
V0.1 20/07/2016 Jose M. Barcelo-Ordinas

(UPC)
Outline of contents

V0.2 10/09/2016 Jose M. Barcelo-Ordinas,
Albert Cerezo Llavero,
Biel Pieras Morell, Jorge
Garcia-Vidal, Manel
Guerrero-Zapata (UPC)

First version

V0.3 7/10/16 Roger Pueyo Centelles
(GUI)

Peer Review

V1.0 10/10/2016 Jose M. Barcelo-Ordinas,
Jorge Garcia-Vidal (UPC)

Final Version

V2.0 15/09/2017 Jose M. Barcelo-Ordinas,
Jorge Garcia-Vidal (UPC)

Final version after EC review

3

Table of Contents

List of Abbreviations .. 5
Executive Summary ... 6
1. Research Context .. 7
2. Software repository ... 8
3. Technological Context ... 8
 3.1 Semantic Web ... 8
 3.2 Linked Data ... 9
 3.3 RDF .. 9
 3.4 Ontologies ... 9
 3.4.1 SSN .. 10
 3.4.2 GEO ... 10
 3.4.3 FOAF ... 10
 3.4.4 CC .. 10
 3.4.5 DC ... 10
 3.4.6 DUL ... 10
 3.5 Django ... 12
 3.6 Bootstrap .. 12
 3.7 API ... 12
 3.8 REST ... 12
 3.9 NodeJS ... 12
 3.10 Express .. 12
4. Platform Design ... 12
 4.1 MySQL database design .. 13
 4.2 New ontology for CommSensum platform ... 15
 4.3 Model mapping between the database and the extended ontology ... 18
 4.4 API.. 19
 4.4.1 POST ... 20
 4.4.2 GET ... 20
5. Website ... 22
6. Conclusions .. 29

List of Figures
Figure 1. CommSensum system Architecture ... 9
Figure 2. Simplified SSN Ontology Graph .. 11
Figure 3. Entities conceptual map. .. 13
Figure 4. CommSensum database design ... 15
Figure 5. CommSensum ontology based model .. 16
Figure 6. API workflow. ... 20
Figure 7. Sensor data output example in graphical view. ... 21
Figure 8. Website view structure map .. 24
Figure 9. User control panel .. 25
Figure 10. Administrator control panel ... 26
Figure 11. Add stream view ... 27
Figure 12. API output recollected in a graph... 28
Figure 13. Edit project view ... 29

4

List of Tables
Tabla 1. Model entities attributes. .. 14
Tabla 2. Mapping between MySQL database entities and the extended ontology. 19

5

List of Abbreviations

API Application Programming Interface
DC Dublin Core
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DnS Descriptions and Situations
DUL DOLCE + ultra-lite DnS
FLOSS Free, Libre, Open Source Softwar
FOAF Friend of a friend
GEO GeoNames Ontology
HTTP Hypertext Transfer Protocol
ICT Information and Communication Technology
IoT Internet of Things
JSON Javascript Object Notation
OLD Open Link Data
OWL Ontology Web Language
RDF Resource Description Framework
REST Representational State Transfer
SQL Structured Query Language
SSN Semantic Sensor Network
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML eXtensible Markup Language

6

Executive Summary

Description of the work
The data collected by the project will be published as Open Linked Data (OLD), using semantic
web techniques (RDF/XML and RDF/JSON data syntax) on the CommSensum platform. This tool
has been developed by UPC as FLOSS, and provides access to the data based on a RESTful API as
an extension to the SSN ontology for sensors data.

The project will contribute to provide a scalable and stable Open Linked Data repository
available to the scientific and regulatory community and also to the other ICT tools in the
project (e.g. the mobile app AirAct, developed by EEA and UPC, already uses data from
CommSensum platform).
The CommSensum platform software is published under the Apache 2.0 license and the source
code is available on the GitHub platform:
https://github.com/Commsensum/commsensum

Objectives

This deliverable covers the following topics and issues:
• Description of the functionalities of the repository platform called CommSensum
• Description of the technologies used in the development of the CommSensum platform
• Description of the back-end of the CommSensum platform, including database types and

entities
• Description of the ontology extension to support RDF connections
• Description of the CommSensum front-end

https://github.com/Commsensum/commsensum

7

1. Research Context
This deliverable presents CommSensum, an Open Link Data community sensing platform built
with the purpose of aggregating the users that generate information and the users that are
working with it. This platform plays a key role in the CAPTOR project, where the availability and
quality of the data is one of the most important factors being worked on.
The software is openly available in https://github.com/Commsensum/commsensum.
From the data collection and storage point of view, the CommSensum platform is appealing for
users because the sensors can be easily linked to it, without technical expertise, facilitating the
deployment of these devices. Additionaly, the RESTful API provided by the platform to supply
the data eases the development of applications.
The user can share her data with other participants, organizations or groups of interest. For
example, a user could choose to share data with environmental organizations or with
neighbourhood platforms. To make data reuse easier, the system uses standardized protocols
and data formats (e.g. it can standardize the predefined words that must be used to obtain a
given data such as temperature (ºC) or ozone (mg/m3)).
The data available at the CommSensum platform may be integrated with data coming from
other repositories, forming part of what is called Open Link Data (OLD) in the context of
semantic web. This can be achieved thanks to the fact that data is supplied using RDF (Resource
Description Framework), a general method for conceptual description or modelling of
information that is implemented in web resources, and because data are compliant with
standard sensor data ontologies like Semantic Sensor Network (SSN) and many other ontologies
described in sections 2 and 3.
There are a number of projects and platforms focused on collective environmental monitoring
(Citi-Sense0F

1, that is part of the Citizen Observatory platform1F

2, Air Quality Egg2F

3, CitySense3F

4,
Aircasting4F

5, etc.), but almost all of them provide a closed architecture and are designed for their
specific applications. An example is the Air Quality Egg, which shows NO2 and CO concentrations
at the localization of the node. Furthermore, the readings obtained by these platforms can not
be used by other applications such as supplementing routine ambient air monitoring, enhancing
source compliance monitoring or OpenSense5F

6 that provides data for building air pollution maps
in an urban area.
The CommSensum platform uses Open Linked Data for sharing sensor data in the Web and
provides the following general characteristics:

• Quality of the data: most of the “cheap” sensors have not been tested under real
conditions and, thus, the performance of the measured data may produce meaningless
information to the applications. In addition to that, even if the sensors would initially

1 Citi-Sense: https://citi-sense.nilu.no
2Citizen’s Observatory: http://www.citizen-obs.eu
3

Air Quality Egg: http://airqualityegg.com
4

R. N. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain, J. Bers, M. Welsh, Citysense: An urban-scale wireless sensor network and
testbed, in: IEEE Conference on Technologies for Homeland Security, 2008, pp. 583–588.
5

Aircasting: http://www.aircasting.org
6

OpenSense: http://www.opensense.ethz.ch/trac

https://github.com/Commsensum/commsensum
https://citi-sense.nilu.no/
http://www.citizen-obs.eu/
http://airqualityegg.com/
http://www.aircasting.org/
http://www.opensense.ethz.ch/trac

8

provide data with enough quality, it is a fact that most sensors lose calibration over time
and need to be recalibrated. Calibration is, in fact, one of the biggest challenges in
participatory sensing and it is still an open research problem. Techniques to
automatically detect the de-calibration of sensors or whether the data are accurate pose
a challenge in air pollution participatory networks.

• Open Linked Data: It is important to have an standard common semantic that enables all
participants to produce data with the same representation in a participatory scenario
with multiple platforms. The SSN (Semantic Sensor Network) ontology6F

7 is an effort to
describe sensors and sensor networks for using them in web applications.

• Data Warehouse: sensor data have to be stored somewhere. Participants take part in
collecting the data but most of them are individuals mainly interested in that this data is
shared with others. Some platforms, such as Xively7F

8 and Carriots8F

9, allow participants to
register their nodes and define the representation of the measured data, offering a
cloud service to store their own private data. On the other hand, CommSensum uses
Open Linked Data (OLD) technology that allows users to access the data of other
participants, while the applications can also retrieve the data contributed by all the
users.

• Security, privacy and data ownership: the data has to be secured at communication level
and at storage level.

2. Software repository

The software described in this deliverable is made available as a FLOSS project under the
Apache 2.0 license at the GitHub platform:

https://github.com/Commsensum/commsensum.

3. Technological Context
In this section all the technologies used in the project and the relevant concepts for the
understanding in the design of the platform are briefly described. Figure 1 presents the system
architecture for CommSensum and the technologies that have been used in the development of
the platform. These technologies are briefly described in the following subsections.

3.1 Semantic Web
The Semantic Web is a project that intends to add computer-processable meaning (semantics)
to the Word Wide Web. In February 2004, The W3C released the Resource Description Frame-
work (RDF) and the OWL Web Ontology Language (OWL) as W3C Recommendations. RDF is
used to represent information and to exchange knowledge in the web. OWL is used to publish
and share sets of terms called ontologies, supporting advanced Web search, software agents
and knowledge management.

7

 L. Lefort, C. Henson, K. Taylor, P. Barnaghi, M. Compton, O. Corcho, R. Garcia-Castro, J. Graybeal, A. Herzog, K. Janowicz, et al., “Semantic
sensor network final report”, W3C Incubator Group Report 28.
8

Xively: https://xively.com/
9

Carriots: https://www.carriots.com

https://github.com/Commsensum/commsensum
https://xively.com/
https://www.carriots.com/

9

Figure 1. CommSensum system Architecture

3.2 Linked Data
The term Linked Data refers to a set of best practices for publishing and connecting structured
data on the Web. Key technologies that support Linked Data are URIs (a generic means to
identify entities or concepts in the world), HTTP (a simple yet universal mechanism for retrieving
resources, or descriptions of resources), and RDF.

3.3 RDF
Resource Description Framework (RDF) is an abstract model, a way to break down knowledge
into discrete pieces, with some rules about the semantics, or meaning, of those pieces. While it
is most popularly known for its RDF/XML syntax, RDF can be stored in a variety of formats.
Examples of RDF serialisations include RDF/XML, Notation-3 (N3), Turtle, N-Triples, RDF and
RDF/JSON. Although RDFs enables the definition of classes, relationships and attributes, these
features are in most of the cases insufficient to model a full ontology because of the existence
of certain constraints (like cardinality or class dis-jointness among others). That’s the reason
why the Web Ontology Language (OWL) was defined.

3.4 Ontologies
A specification of a representational vocabulary for a shared domain of discourse - definitions of
classes, relations, functions, and other objects - is called an ontology. Ontologies are useful for
sharing common understanding of the structure of information among people or software
agents, enabling reuse of domain knowledge, making domain assumptions explicit, separating
domain knowledge from the operational knowledge and analysing domain knowledge. In our
case, ontologies are used specially for its ability to share common understanding of the
structure of information among people or software agent. The ontologies used are SSN for the
representation of sensor metadata, GEO for the geospatial data representation, FOAF for the
representation of users, CC for the copyright information, DC for describing generic metadata
and DUL as the supporting upper-level ontology. Upper level ontologies are used to facilitate
the semantic integration of domain ontologies and guide the development of new ontologies.
For this purpose, they contain general categories that are applicable across multiple domains.

10

3.4.1 SSN

The SSN ontology is based around concepts of systems, processes, and observations. It supports
the description of the physical and processing structure of sensors. Sensors are not constrained
to physical sensing devices: rather a sensor is anything that can estimate or calculate the value
of a phenomenon, so a device or computational process or combination could play the role of a
sensor. The representation of a sensor in the ontology links together what it measures (the
domain phenomena), the physical sensor (the device) and its functions and processing (the
models). In Figure 2 there’s a simplified version of the ontology.

3.4.2 GEO

The GeoNames Ontology makes it possible to add geospatial semantic information to the Word
Wide Web. All over 8.3 million geo-names toponyms now have a unique URL with a
corresponding RDF web service. In our case it’s used for describing the latitude, altitude and
longitude of a sensing device.

3.4.3 FOAF

FOAF is a machine-readable ontology describing persons, their activities and their relations to
other people and objects. It is used to describe people and social relationship on the Web and
it’s mostly focused on people’s existence in the virtual world. In the CommSensum system it is
used for describing users and projects.

3.4.4 CC

The Creative Commons Rights Expression Language (CC REL) lets you describe copyright licenses
in RDF. In our case it is used for describing the license under which a project is registered.

3.4.5 DC
Dublin Core is a light weight RDFS vocabulary for describing generic metadata. It is ubiquitous in
the linked data landscape.

3.4.6 DUL
DUL is a lighter OWL axiomatization of DOLCE and DnS (Descriptions and Situations) which also
simplifies the names of many classes and properties, adds extensive inline comments, and
thoroughly aligns to the repository of Content patterns. DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) is the first module of the Wonder Web foundational
ontologies library. It has a clear cognitive bias, in that it aims at capturing the ontological
categories underlying natural language and human common sense. DnS (Descriptions and
Situations) is a constructivist ontology that pushes DOLCE’s descriptive stance even further. DnS
does not put restrictions on the type of entities and relations that one may want to postulate,
either as a domain specification, or as an upper ontology, and it allows for context-sensitive re-
descriptions of the types and relations postulated by other given ontologies.

11

Figure 2. Simplified SSN Ontology Graph

12

3.5 Django
Django is an open source web application framework, written in Python, which follows the
model-view-controller architectural pattern. It was originally developed to manage several
news-oriented sites for The World Company of Lawrence, Kansas, and was released publicly
under a BSD license in July 2005. Django’s primary goal is to ease the creation of complex
database-driven websites. It emphasizes on reusability, pluggability of components and rapid
development.

3.6 Bootstrap
Bootstrap is a free collection of tools for creating websites and web applications developed by
Mark Otto for Twitter. It contains HTML and CSS-based design templates for typography,
forms, buttons, navigation and other interface components, as well as optional JavaScript
extensions.

3.7 API
An application-programming interface (API) is a set of programming instructions and standards
for accessing a web-based software application. A software company releases its API to the
public so that other software developers can design products that are powered by its service.

3.8 REST
Representational state transfer (REST) is a software architectural style consisting of a
coordinated set of architectural constraints applied to components, connectors, and data
elements, within a distributed hypermedia system. RESTful APIs are defined with these aspects:

• base URI such as http://commsensum.pc.ac.upc.edu/
• an Internet media type for the data which is often JSON
• standard HTTP methods (e.g., GET, PUT, POST, or DELETE)
• hypertext links to reference state
• hypertext links to reference related resources

3.9 NodeJS
Node.js is a platform built on Chrome’s JavaScript runtime for easily building fast, scalable
network applications. Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient, perfect for data-intensive real-time applications that run across
distributed devices. Web development in a dynamic language as JavaScript on a virtual machine
like V8 is much faster than Ruby, Python, or Perl. It has the ability to handle thousands of
concurrent connections with minimal overhead on a single process.

3.10 Express
Express is a minimal and flexible node.js web application framework, providing a robust set of
features for building single and multi-page, and hybrid web applications. It provides a myriad
of HTTP utility methods and Connect middleware which allow creating a robust user-friendly
API be quick and easy.

4. Platform Design
In order to store all the information that the sensors gather, it is required to create a model
determining which entities from the real world exist and act in our system. A first model

http://commsensum.pc.ac.upc.edu/

13

implements a MySQL database as described in section 3.1. Secondly, in subsection 3.2 it is
explained the ontology chosen for the CommSensum platform. Finally, in subsection 3.3 the
mapping between the MySQL database and the RDF with the ontology defined is described.

4.1 MySQL database design
The first model designed is explained in this simple conceptual map in Figure 3. A user can
create a project or join an existing one which was created by another user. This relationship is
determined by a role which can be: Administrator, only the administrators can control the users
that join the project and they also can send and read all the sensor data related to the project;
Collaborator, collaborators can send and read all the sensor data related to the project;
Observer, observers are only allowed to read the sensor data related to the project.
A project has several streams of data which are considered a collection of data related to each
other coming from one unique source, e.g., a sensor may have 2 streams where in the first one
the battery level measurements are sent and in the latter the humidity level in the air.

Figure 3

Figure 3. Entities conceptual map.

Users need to register their nodes so as to be able to send the data to the system, which allows
establishing the ownership of the node. This is important in order to determine which user can
modify the node properties and which user should be notified when the system detects that the
node is not responsive anymore. Node types are used to cluster nodes by their capabilities. Data
meta-data is stored as data type and it’s connected to the actual data.
The attributes of each entity in the model explained before are listed in Table 1. It is important
to emphasize that in the node entity there’s a geo-positioning redundancy since the city,
country and region could be obtained through the latitude and longitude, but it was decided to
keep both ways of expressing it in order to make it easier for developers.

14

Entity Attributes

User first name
last name
email

 APIkey

Project Name
Description
License

Node Name
Description
Timezone
Status
Serial Number
Enabled
Latitude
Longitude
Altitude
City
Country
Region

NodeType Name
Description

Stream

Name
Description
Last update

Data Value
Date

DataType Name
Units
Description

Tabla 1. Model entities attributes.

Figure 5 represents the MySQL implementation of the model described in section 3.1. Every box
represents a table in the database stating all the columns and its data type. Every table has at
least one small yellow key that represents the primary key. The red dot symbolizes that this
column is a foreign key to another table.

15

Figure 4. CommSensum database design

4.2 New ontology for CommSensum platform
The model presented in section 3.1 is based on MySQL and does not initially support RDF. In
order to represent the data in RDF, the ontologies presented in section 2.4 have to be extended

16

and an intermediate level that communicates with the MySQL database has to be built.

Figure 5. CommSensum ontology based model

To represent all the information required, the system was modelled extending the SSN
ontologies. The resulting new ontology can be seen in Figure 5. Each of the entities and their
relationships will now be described:

• ssn:Observation (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation):
An Observation is a Situation in which a Sensing method has been used to estimate or
calculate a value of a Property of a FeatureOfInterest. Links to Sensing and Sensor
describe what made the Observation and how; links to Property and Feature detail what
was sensed; the result is the output of a Sensor; other metadata details times etc.
Attributes:

o rdfs:label
o ssn:observationResultTime

• ssn:Property (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Property):
An observable Quality of an Event or Object. That is, not a quality of an abstract entity as
is also allowed by DUL’s Quality, but rather an aspect of an entity that is intrinsic to and
cannot exist without the entity and is observable by a sensor.
Attributes:

o rdfs:label
o rdfs:comment

• ssn:SensorOutput (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#SensorOutput)
A sensor outputs a piece of information (an observed value), the value itself being
represented by an ObservationValue.

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation)
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Property
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#SensorOutput)

17

• DUL:Amount (http://purl.org/ifgi/dul#Amount)
A quantity, independently from how it is measured, computed, etc.
• DUL:UnitsOfMeasure (http://purl.org/ifgi/dul#UnitOfMeasure)
Units of measure are conceptualized here as parameters on regions, which can be
valued as data type values.
• ssn:SensingDevice (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#SensingDevice)
A sensing device is a device that implements sensing.

Attributes:
o rdfs:label
o rdfs:comment

• ssn:Deployment (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Deployment)
The ongoing Process of Entities (for the purposes of this ontology, mainly sensors)
deployed for a particular purpose. For example, a particular Sensor deployed on a
Platform, or a whole network of Sensors deployed for an observation campaign. The
deployment may have sub pro-cesses, such as installation, maintenance, addition, and
decomissioning and removal.
• ssn:Platform (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Platform)
An Entity to which other Entities can be attached - particularly Sensors and other
Platforms. For example, a post might act as the Platform, a bouy might act as a
Platform, or a fish might act as a Platform for an attached sensor.
• geo:SpatialThing (http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing)
A point, typically described using a coordinate system relative to Earth, such as WGS84.
Uniquely identified by latitude, longitude and altitude.
Attributes:

o geo:lat
o geo:long
o geo:alt

• foaf:Project (http://xmlns.com/foaf/spec/#term_Project)
The Project class represents the class of things that are ’projects’. These may be formal
or informal, collective or individual. It is often useful to indicate the homepage of a
Project.
Attributes:

o dc:title
o dc:description
o cc:license

• foaf:Agent (http://xmlns.com/foaf/spec/#term_Agent)
The Agent class is the class of agents; things that do
stuff.
Attributes:

o foaf:name
o foaf:nick
o foaf:mbox

http://purl.org/ifgi/dul#Amount
http://purl.org/ifgi/dul#UnitOfMeasure
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#SensingDevice
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#SensingDevice
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Deployment
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Platform
http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing
http://xmlns.com/foaf/spec/#term_Project
http://xmlns.com/foaf/spec/#term_Agent)

18

• addr:Address (http://wiki.foaf-project.org/w/AddressVocab) The
Address class represents a region in space using political boundaries.
Attributes:

o addr:thoroughfareName
o addr:town
o addr:region
o addr:country

• ssn:ObservationResult
(http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observationResult)

Relation linking an Observation (i.e., a description of the context, the Situation, in
which the observation in was made) and a Result, which contains a value representing
the value associated with the observed Property.
• ssn:ObservedProperty
(http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observedProperty)
Relation linking an Observation to the Property that was observed. The
observedProperty should be a Property (hasProperty) of the FeatureOfInterest (linked
by featureOfInterest) of this observation.
• ssn:isProducedBy (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#isProducedBy)
Relation between a producer and a produced entity: for example, between a sensor and
the produced output.
• ssn:hasValue (http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#hasValue)
• DUL:isClassifiedBy (http://purl.org/ifgi/dul#isClassifiedBy) A
relation between a Concept and an Entity
• ssn:hasDeployment
(http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#hasDeployment)
Relation between a System and a Deployment, recording that the System/Sensor was
deployed in that Deployment.
• ssn:deployedOnPlatform
(http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#deployedOnPlatform)
Relation between a deployment and the platform on which the system was deployed.
• DUL:hasLocation (http://purl.org/ifgi/dul#hasLocation) A
generic, relative localization, holding between any entities.
• foaf:currentProject (http://xmlns.com/foaf/spec/#term_currentProject)
A currentProject relates a Person to a Document indicating some collaborative or
individual undertaking. This relationship indicates that the Person has some active role
in the project, such as development, coordination, or support.
• Foaf:maker (http://xmlns.com/foaf/spec/#term_maker)
The maker property relates something to an Agent that made it.

4.3 Model mapping between the database and the extended ontology
Using the information stored in the database, which had been implemented following the first
model, it was required to add a mapping layer between models. Since both models represent
the same part of the world but defining different relations and entities, there should exist a

http://wiki.foaf-project.org/w/AddressVocab
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observationResult
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observationResult
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observedProperty
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#observedProperty
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#isProducedBy
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#hasValue
http://purl.org/ifgi/dul#isClassifiedBy
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#hasDeployment
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#hasDeployment
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#deployedOnPlatform
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#deployedOnPlatform
http://purl.org/ifgi/dul#hasLocation
http://xmlns.com/foaf/spec/#term_currentProject
http://xmlns.com/foaf/spec/#term_maker

19

mapping function between them. Table 2 shows from which former entities implementation do
the new entities gather the information. Those new entities that are not in the table don’t store
any literals but they are the vehicle to relate other entities that store them.

Ontology Database

ssn:SensingDevice Node

geo:SpatialThing Node

foaf:Agent User

foaf:Project Project

DUL:UnitsOfMeasure DataType

DUL:Amount Data

ssn:SensorOutput Stream
Node

ssn:Observation Data
DataType

ssn:Property DataType

Tabla 2. Mapping between MySQL database entities and the extended ontology.

4.4 API
The API has been developed using NodeJS in conjunction with the Express web application
framework. The CommSensum API serves two purposes: (i) storing the data that the sensors
send to the system and (ii) answering to requests that are used to query the data stored in the
database.
These two kinds of requests can be sent using the POST and GET HTTP methods. Sensors can
send the data directly to the Commsensum platform or, alternatively, this data can be first
stored in an intermediate format (e.g. CSV) to be introduced in the platform later.
A security layer on top of both methods has been implemented in order to protect the system
from fraudulent data insertion and to protect the user’s data they don’t want to be shared.
This security layer is provided by the username and the given API key when the user is
registered to the system. Nowadays it’s implemented as a better password system but a
signature should be calculated instead as S = F(K, R), where K is the API key and R is the entire
request, including all request parameters. The F function should be a secure message
authentication code algorithm, such as AES-CMAC or SHA1-HMAC. The API work-flow is shown
in Figure 6.

20

Figure 6. API workflow.

4.4.1 POST

When a sensor has data to insert to the system, it can form an HTTP POST request with a valid
RDF document containing the data, the username and the API key in the headers, and 3
parameters in the URL: the API version, the project name and the stream name. The first
parameter was introduced for compatibility reasons: if some nodes were deployed with the
current version of the API but, after some time, the API was extended and the system changed,
the old nodes might stop working. If an API version is included in the URL both versions can
work simultaneously. The project name and the stream name parameters are necessary to
identify where the data should be stored to.
Alternatively, sensors can create CSV files that will be later stored in the platform in an
equivalent format as the used when the direct POST method is used.

4.4.2 GET

An HTTP GET request needs to be created in order to retrieve data from the system. This
request should include the username and the API key in the headers as the POST request. Unlike
the POST request, there are multiple ways of performing this operation depending on the entity
you want to obtain and on the constraints you are applying. The required parameters are
different if all the sensors from a project are requested in comparison to those needed to obtain
the last measure of the humidity sensor closest to, i.e., the White House.

The API has been designed to allow the permutation of the parameters in the URL, thus making
the order not matter. All the examples provided below are referenced to the base URL
http://commsensum.pc.ac.upc.edu in order to make them shorter.

Observations

21

• URL: /observations
• Input parameters: sensors, projects, samplingTimes, observedProperties and geo.

The sensor parameter is used to determine the sensor from which the data is obtained by
providing its id. The project parameter is used to determine from which project the data will be
obtained by providing its id. The samplingTimes parameter may be used in 2 different ways: it
can be used as a single data with the format YYYYMMDDThhmmss and it can also be used as an
interval between two dates separated by two colons. If the samplingTimes parameter is used,
the observations obtained will correspond to that interval of time. The observed-properties
parameter is used to determine what property the user is trying to obtain by providing its id.
Finally, the geo parameter is a string formed by the latitude, longitude and radius separated by
a semicolon. The latitude and longitude determine a central point, while the radius is used to
establish how far from that point should the data be gathered.
For example, if the user wanted to obtain all the observations made between the 30th of April
of 2014 at 06:08:31 and the 1st of May of 2014 at 06:08:31 and that also come from the project
with the id 6 (which should be public or only the owner would be able tor retrieve this data) the
URL would be /observations/projects/6/samplingTimes/20140430T060831::20140501T060831.
The RDF/XML is too big to be added to this document but a graph generated from the obtained
output is displayed in Figure 7.

Figure 7. Sensor data output example in graphical view.

Sensors
• URL: /sensors
• Input parameters: country, city, project and geo.

The country and city parameters are used to respectively determine in which country and city
should be located the sensors that are being searched. The geo and project parameters work
like their homonyms in the Observations get function. If no extra parameter is introduced it s
possible to query the sensor by id like "/sensors/2" for example.

22

In case the user wanted to get a list of the sensors that are located in the city of Barcelona the
URL would be /sensors/city/Barcelona.

Projects
• URL: /projects
• Input parameters: none
Agents
• URL: /agents
• Input parameters: none
Properties
• URL: /properties
• Input parameters: none
UnitsOfMeasure
• URL: /unitsofmeasure
• Input parameters: none

Projects, agents, properties and unitsofmeasure can only be queried by id.

5. Website
The website has been implemented using Django, a Python-based web framework that follows
the Model-View-Controller (MVC) architectural pattern. Django is a very well-known framework
that provides many of the functionality that had to be developed like the administrator panel
which allows managing all the entities in the database. The MVC pattern on which Django is
based on is an abstract model that separates the data from an application, the user interface
and business logic (inputs, generating queries or data) into three different components: model,
view and controller. In addition to dividing the application into three types of components, the
MVC pattern also defines its interactions.

• The model represents the data structures, and usually provides functions that help you
retrieve, insert or update information in the database. It also contains functions to
access other data from other web services or APIs.

• The View is the information that is presented to the user.
• The controller acts as intermediary between the Model, the View and other resources.

All the models that Django uses are loaded from the database so there’s a class for every entity
previously detailed in the database section.
The structure of the views implemented in CommSensum can be seen in Figure 8. From the
home page you can access the part of the website that explains what the project is about, the
project’s blog and the private area. The private area includes the dashboard from which an
overview can be seen in Figure 9 and, in case the user is also an administrator of the system, it
will also include the administration dashboard from which an overview can be seen in Figure
10.

23

From within the user dashboard, the user can add projects, subscribe to a project, view the list
of all his/her projects and edit them. The user can also add and edit sensors, view the list of all
the sensors that he/she has registered, add a stream or edit an existing one. In the dashboard
there’s also access to a list of all the data gathered by its sensors and a query interface that
uses the API which facilitates the results in RDF/XML, formatted in a table or if it’s possible,
recollected in a graph as it can be seen in Figure 11.
The administrator dashboard allows the administrator to manage all the entities that control
the website. These entities are the same as the user can control but there’s no restriction, so
the admin can change other users' information. There are also some special entities like Group,
User, ProjectStatus or DataType that are only available to the administrator. It may be
emphasised that most of the "View all ...", "Add ..." and "Edit ..." seen in Figure 8 are the same
view but they use different models to populate them. In Figures 12, 13 and 14 there are
examples of each of them.
The website design has been developed using Bootstrap as the base and this allowed us to focus
on the functionality rather than in the looks of the interface. The website is currently available
at http://commsensum.pc.ac.upc.edu.

http://commsensum.pc.ac.upc.edu/

24

Figure 8. Website view structure map

25

This figure shows the Control Panel that allows i) to select and manage Projects created by users
where each project consists on Sensor nodes and streams of data select specific; ii) to select and
manage sensor nodes, iii) to select and manage streams belonging to sensor nodes, and iv) to
select and manage data.

Figure 9. User control panel

26

The following figure shows the administrator control panel that allows to manage groups, authorize
permissions and add projects and confirm registrations.

Figure 10. Administrator control panel

27

The following figure shows how to add a stream in a project.

Figure 11. Add stream view

The following figure shows the data plotted for a data stream for a period of time. In this case, the query
is performed using RDF language. There also exists the possibility to access the data via a non-RDF query,
choosing a project, a node and stream and choosing in a calendar the initial date and the final date that
the user wants to visualize.

28

Figure 12. API output recollected in a graph

The following figure shows how to create a project, adding the name, description, user and streams.
Since a project consists on streams and nodes, first these ones have to be created.

29

Figure 13. Edit project view

6. Conclusions
In this deliverable we presented CommSensum, an Open Link Data community sensing platform.
This platform plays a key role in the CAPTOR project as it will be used as a platform for making
openly public the results of our scientific experiments. We are currently working in improving
the platform after the feedback obtained in our first testbed usage.

	Executive Summary
	1. Research Context
	2. Software repository
	https://github.com/Commsensum/commsensum.
	3. Technological Context
	3.1 Semantic Web
	3.2 Linked Data
	3.3 RDF
	3.4 Ontologies
	3.4.1 SSN
	3.4.2 GEO
	3.4.3 FOAF
	3.4.4 CC

	3.4.5 DC
	3.4.6 DUL
	3.5 Django
	3.6 Bootstrap
	3.7 API
	3.8 REST
	3.9 NodeJS
	3.10 Express

	4. Platform Design
	4.1 MySQL database design
	4.2 New ontology for CommSensum platform
	4.3 Model mapping between the database and the extended ontology
	4.4 API
	4.4.1 POST
	4.4.2 GET

	5. Website
	6. Conclusions

